

KRISTALLOPTIK & MIKROBEARBEITUNG **VON PRÄZISIONSBAUTEILEN**

Eigenschaften von Saphir

Chemische Eigenschaften

Chemische Zusammensetzung: Monokristallines Al₂O₃

inert gegen viele Säuren, Alkalien, Metalldämpfe Chem. Beständigkeit:

und Gase

Physikalische Eigenschaften

3,98 g cm⁻³ Spezifisches Gewicht:

Härte Mohs:

1.800 daN mm⁻² parallel zur C-Achse Knoop:

2.200 daN mm⁻² senkrecht zur C-Achse

360 - 450 GPa (25°C) Elastizitätsmodul:

190 N mm⁻² (25°C) Zugfestigkeit:

2.000 N mm⁻² (25 °C) Druckfestiakeit:

400 - 900 N mm⁻² (25°C) Biegefestigkeit:

Thermische Eigenschaften

Schmelzpunkt: 2.040℃

6,7*10⁻⁶ K⁻¹ (25°C) parallel zur C-Achse Thermische Ausdehnung:

5,0*10⁻⁶ K⁻¹ (25 °C) senkrecht zur C-Achse

40 W m⁻¹ K⁻¹ (25 °C) Wärmeleitfähigkeit:

12 W m⁻¹ K⁻¹ (400 °C) 4 W m⁻¹ K⁻¹ (1.200 ℃)

764 J kg⁻¹ K⁻¹ (25 °C) Wärmekapazität:

Optische Eigenschaften

Brechungsindex: $n_o = 1,766 (590 nm)$

 $n_e = 1,760 (590 nm)$

nutzbar 200 nm - 5,5 μm Optische Transparenz:

Reflektionsverlust: ca. 15 % an zwei Flächen (590 nm)

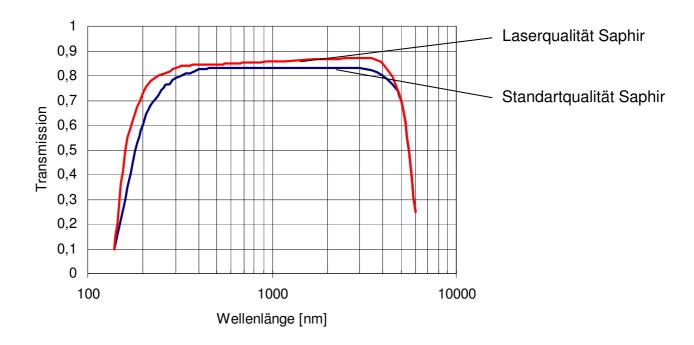
Elektrische Eigenschaften

10¹⁶ Ohm cm (25°C) Spezifischer Widerstand:

10¹¹ Ohm cm (500 °C) 10⁶ Ohm cm (1.000°C)

11.5 parallel zur C-Achse (10³ - 10⁹ Hz bei 25°C) Dielektrizitätszahl:

9,3 senkrecht zur C-Achse (103 - 109 Hz bei


25°C)

Spannungsfestigkeit: 48 kV mm⁻¹ (50 Hz)

KRISTALLOPTIK & MIKROBEARBEITUNG VON PRÄZISIONSBAUTEILEN

Transmission

Transmission durch ein 2 mm Saphirfenster